Market Analysis and Insights
The market for artificial intelligence in genomics was estimated to be worth USD 484.3 million in 2022 and is anticipated to grow to USD 12.07 billion by 2032, a CAGR of 39.05% from 2021 to 2032.
Artificial Intelligence in Genomics Market growth may be significantly influenced by developments in AI technology. The discipline of genomics is being revolutionized by the use of AI, a potent technology that can swiftly and correctly analyze enormous volumes of genetic data. AI algorithms may assist in identifying patterns, trends, and anomalies that may be difficult for human researchers to notice due to their capacity for processing vast volumes of data.
Artificial Intelligence in Genomics Market Scope:
Metrics | Details |
Base Year | 2023 |
Historic Data | 2018-2022 |
Forecast Period | 2024-2032 |
Study Period | 2018-2032 |
Forecast Unit | Value (USD) |
Revenue forecast in 2032 | USD 12.07 billion |
Growth Rate | CAGR of 39.05% during 2021-2032 |
Segment Covered | by Offering,by Technology ,by Application, by End User ,by Region. |
Regions Covered | North America, Europe, Asia Pacific, South America Middle East and Africa |
Key Players Profiled | Microsoft, IBM, DATA4CURE, INC, Sophia Genetics, NVIDIA Corporation, Deep Genomics, Freenome Holdings, Inc., Illumina, Inc., Thermo Fisher Scientific, and BenevolentAI . |
Market Definition
The practice of successfully and efficiently supervising the physical resources, infrastructure, and operations within a company's facilities or buildings is known as facility management (FM).
Facility management's main mission is to make sure that the physical environment supports the organization's basic objectives and offers its inhabitants a secure, useful, and comfortable area. optimizing the distribution of space inside a building and its usage in order to increase production and efficiency. This entails organizing changes in space requirements, arranging meetings, and designing workplace layouts. ensuring that the building's structural, plumbing, electrical, and HVAC systems are appropriately maintained and repaired as needed to save downtime and assure safety.
Putting in place security measures, such as access control, monitoring, and emergency response preparation, to safeguard the building and its users. Another important factor is making sure safety laws are followed. Managing environmental issues, such as trash reduction, energy efficiency, and sustainability programmes to lessen the facility's environmental impact.
Budgeting, cost control, and resource allocation optimization are used to accomplish cost-effective facility operations. Choosing and overseeing service providers, suppliers, and contractors to ensure they adhere to the facility's requirements and standards.
Key Market Segmentation
Insights on Offering
In 2021, Software Segment Held the Biggest Market Share
The AI in Genomics Market Size in 2021 was mostly driven by the software segment. However, the hardware segment is predicted to develop at the greatest CAGR throughout the projected period. Because AI makes it possible to analyze the enormous volumes of data produced by genomic sequencing methods, AI hardware has been employed in genomic analysis more and more recently.
Insights on Technology
It is anticipated that the Machine Learning Segment Will Develop the Fastest
In terms of revenue, the machine learning category led the market in 2021 and is predicted to expand at a quicker CAGR over the next years. This is due to a vast variety of applications favoring precision medicine, drug development, and genetic data analysis.
Insights on Application
It's Anticipated that the Drug Discovery Segment Would Account for a Sizeable Portion of Income
Due to the drug discovery process being streamlined in 2021, which decreased the time and money needed to produce new treatments while simultaneously increasing success rates, this sector accounted for the largest share of the market. But due to the fact that the use of AI in genomics has significantly improved the accuracy and speed of diagnostic testing, the diagnostics category is predicted to increase at the greatest CAGR throughout the foreseeable period.
Insights on Region
The North American Region Accounted for the Highest Share
In 2021, North America was the region that contributed the most money to the market. This is credited to a vast number of universities and research organizations that are at the forefront of AI research, including Stanford, MIT, Carnegie Mellon University, and the University of California, Berkeley. These organizations perform cutting-edge research and draw top people from around the globe. Additionally, both the public and corporate sectors of the American economy have made significant investments in the study and development of AI.
Key Company Profiles
Microsoft, IBM, DATA4CURE, INC, Sophia Genetics, NVIDIA Corporation, Deep Genomics, Freenome Holdings, Inc., Illumina, Inc., Thermo Fisher Scientific, and BenevolentAI are the leading participants in the industry.
COVID-19 Impact and Market Status
The pandemic brought home how important genomics is to understanding infectious diseases. Globally, scientists used genomics to investigate the genetics of the virus, track its mutations, and create diagnostic tools and therapies.
In order to analyze and interpret the vast volumes of genetic data produced during the epidemic, AI was essential. The development of COVID-19 vaccinations was sped up using AI. AI algorithms supported the development of vaccination candidates, immune response forecasting, and target selection for therapeutic therapies. AI was used to find current medications that may be modified to treat COVID-19. This strategy attempted to hasten the viral therapies' availability.
To help with early identification and surveillance of the illness, AI-powered diagnostic tools, such as machine learning algorithms for recognizing COVID-19 from medical imaging and genomic data, were created.
The epidemic affected the gathering and processing of genetic data by upsetting supply networks and laboratory operations. However, in such situations, the need for AI systems that could operate with little data or improve data analysis increased.
Significant money has been provided by governments and organizations from around the world to support COVID-19-related genomics research and AI-driven activities. The advancement of AI applications in genomics was aided by this influx of funds.
Latest Trends
1. In genomics, AI was being utilized more and more to speed up drug development. In order to speed up and lower the cost of drug development, machine learning algorithms were used to help find new drug candidates, forecast their interactions with target proteins, and optimize their characteristics.
2. The advancement of personalized medicine was being driven by AI. By tailoring treatment approaches based on a patient's genetic composition, genomic data, and AI analytics have increased treatment efficacy and decreased side effects. In the analysis of cancer genome data, AI was an essential component. To detect certain cancer subtypes, forecast patient outcomes, and direct treatment choices, machine learning algorithms were applied.
3. In order to examine cellular diversity and gene expression at an unprecedented degree of detail, AI was used for single-cell sequencing data. This had repercussions for comprehending illness processes and creating specialized treatments.
4. AI-based diagnostic technologies were proliferating and helping to analyze genetic testing for illnesses and offer insights into disease risk and prevention.
5. Machine learning was assisting geneticists in better interpreting genetic variations, and separating disease-causing mutations from benign ones, which is essential for clinical decision-making and genetic counseling.
6. To combine and analyze various genomic information, including DNA, RNA, epigenetic, and clinical data, AI-driven systems were being created. The knowledge of complicated disorders was being improved by this all-encompassing approach.
Significant Growth Factors
Genome data creation has exploded as a result of the ongoing decrease in the cost of genome sequencing. AI is essential for effectively processing and understanding this enormous volume of data.
The creation of more complex AI algorithms that can more accurately and insightfully analyze and interpret genetic data is the outcome of ongoing research in machine learning and deep learning. Drug development and discovery using AI are becoming more popular. Pharmaceutical firms are increasingly utilizing AI for drug target identification, medication repurposing, and virtual screening, which can speed up drug development and save costs. The idea of personalized treatment has gained popularity because of AI analysis of genetic data.
Cancer genomics has significantly advanced thanks to AI. The introduction of tailored treatments has improved the results of cancer therapy due to the capacity to analyze tumor genomes and forecast treatment responses. Universities and research institutes are still spending money on AI technologies and skills for genomics research. As a result, the academic and research sectors adopt AI at a faster rate.
Numerous firms focusing on various elements of genomics, from data analysis to diagnoses, have emerged in the context of genomics and AI. These businesses have received a sizable amount of venture capital investment, which has helped the market flourish.
Restraining Factors
Genomic information is extremely private and confidential. A fundamental difficulty is guaranteeing the secure storage and exchange of genetic data while still protecting patient privacy.
Data sharing and research partnerships may be hampered by worries about data breaches and abuse. The use of AI in genomics brings up moral issues including permission for genetic testing and data usage, the possibility of genetic discrimination, and the consequences of CRISPR and other genetic editing technologies. Regulation and public attention may result from ethical problems. Genomic data frequently originates from several platforms and sources, making data integration and interoperability difficult. The smooth flow of data might be hampered by a lack of standardized formats and protocols.
Genomic data might be erratic and prone to mistakes. Bias and mistakes in analyses and predictions can be sustained by AI models trained on inadequate or biased data. A constant problem is ensuring data quality and combating prejudice. Regulations for AI in genomics are currently being developed. It may be difficult to navigate the complicated regulatory environment, and although compliance with data protection rules, such as the GDPR, is necessary, it can be onerous.
Genomic AI models need to undergo thorough validation to guarantee their correctness and dependability. AI models may be challenging to comprehend due to their complexity, which may prevent clinical application and regulatory approval.
Recent Developments in the Global Artificial Intelligence in Genomics: A Snapshot
• To complement one another's strengths in next-generation sequencing, SOPHiA GENETICS and QIAGEN Forge teamed together in March 2023. It will combine the SOPHiA DDMTM platform and QIAseq reagent technology to improve tumor analysis using next-generation sequencing (NGS). Additionally, QIAGEN's Partnership Programme enables more clients to make use of the superior quality of its NGS preparation kits by utilizing a wider array of analytics solutions to satisfy their specific research and interpretation needs.
• Predictive Oncology and Cancer Research Horizons collaborated in March 2023 to further the development of the PEDAL platform for cancer treatment. This will hasten the development of cancer treatments utilizing compounds created by Cancer Research Horizons in association with the CRUK network and originating from their worldwide network.
Key Segments Artificial Intelligence in Genomics Market
by Offering
• Hardware
• Software
• Services
by Technology Overview
• Machine Learning
• Computer Vision
by Application Overview
• Drug Discovery and Development
• Precision Medicine
• Diagnostics
• Others
by End User Overview
• Pharmaceutical and Biotech Companies
• Healthcare Providers
• Research Centers
Regional Overview
North America
• U.S
• Canada
Europe
• Germany
• France
• UK
• Rest of Europe
Asia Pacific
• China
• India
• Japan
• Rest of Asia Pacific
South America
• Mexico
• Brazil
• Rest of South America