Text analytics is a process of analyzing and exploring a huge amount of unstructured data assisted by software which can recognize patterns, concepts, keywords, topics, and other attributes in the text. Text analytics has become further practical for data scientists and users owing to the advancement of deep learning algorithms and big data platforms that can analyze huge sets of unstructured text.
Analyzing and mining text helps businesses to find potentially valuable business insights in consumer’s emails, corporate documents, call center logs, social network posts, medical records, verbatim survey comments, and other resources of text-based data. Gradually, text analytics
Text analytics is a process of analyzing and exploring a huge amount of unstructured data assisted by software which can recognize patterns, concepts, keywords, topics, and other attributes in the text. Text analytics has become further practical for data scientists and users owing to the advancement of deep learning algorithms and big data platforms that can analyze huge sets of unstructured text.
Analyzing and mining text helps businesses to find potentially valuable business insights in consumer’s emails, corporate documents, call center logs, social network posts, medical records, verbatim survey comments, and other resources of text-based data. Gradually, text analytics competences are also being integrated into virtual agents and chatbots that organizations deploy to offer automated responses to consumers as a part of their marketing, customer service, and sales operations.
Areas of Text Analytics
How Text Analytics Works?
Text analytics is similar in nature to data analytics, but with emphasize on text instead of more structured data. Though, the first step in the text analytics process is to structure and organize the data in some manner so it can be exposed to both quantitative and qualitative analysis.
Doing so usually includes the use of NLP (Natural Language Processing) technology that applies computational semantics principles to interpret and parse text sets.
The upfront work comprises clustering, tagging, and categorizing text; creating taxonomies, and mining information about things such as relationships between data entities and word frequencies. Analytical simulations are then run to produce findings which can help to drive operational actions and business strategies.
In the past few years, natural language processing algorithms primarily depended on rules-based or statistical models which provided direction on what to search for data sets. In 2010, however, the deep learning models which work in a less controlled way developed as an alternative method for text analytics and also for other improved analytics applications including large data collections.
As a result, the text analytics tools are currently better armed to uncover fundamental similarities and relations in text data, although data scientists do not have a better understanding of what they are expected to find at the beginning of a project.
Benefits of Text Analytics
Text Analytics Challenges and Issues
Applications of Text Analytics
Open ended survey queries will aid the respondents to give their opinion or view without any restrictions. This will help to identify more about the consumers’ opinions than trusting on structured surveys. Text analytics can be used to analyze this information as a text.
Text Analytics is also mostly used to categorize the text. Text analytics can be used to sort the needless mail by using certain phrases or words. Such mails will automatically remove to spam. An automatic system of filtering and categorizing selected mails and sending it the consistent department is done using text analytics system.
In many organizations, information is composed mostly in the form of a text document. For example in healthcare industry the patient interviews can be described briefly in text format and the reports are also generated in the text form. These notes are nowadays together electronically so that it can be simply transferred into text analytics algorithms. Such records can then be useful to diagnose a genuine situation.
Another significant application area of text analytics is processing the subjects of web pages in a specific domain. Through this method one can find out the most significant terms implemented in the website. With such a way, one can recognize the capabilities of the participants that can help you to provide business efficiently.